Infinity Supercritical LLC


Publication Title | APPLIED AND ENVIRONMENTAL MICROBIOLOGY

SDR Search Engine Series

Spinning Disc Reactor | Botanical Oil Organic Fluid Extraction search was updated real-time via Filemaker on:

Spinning Disc Reactor | Botanical Oil Organic Fluid Extraction | Return to Search List

Search Completed | Title | APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Original File Name Searched: 2585-05.pdf | Google It | Yahoo | Bing



Page Number: 006
Previous Page View | Next Page View

Text | APPLIED AND ENVIRONMENTAL MICROBIOLOGY | 006



VOL. 72, 2006

EDTA AND BIOFILMS 2069

This work was supported by grants from the W. M. Keck Foundation and the National Institute of General Medical Sciences (GM59026) to E.P.G. E.B. was partially funded by the Fulbright program.

REFERENCES

1. Ayres, H. M., J. R. Furr, and A. D. Russell. 1998. Effect of divalent cations on permeabilizer-induced lysozyme lysis of Pseudomonas aeruginosa. Lett. Appl. Microbiol. 27:372–374.

2. Ayres, H. M., J. R. Furr, and A. D. Russell. 1999. Effect of permeabilizers on antibiotic sensitivity of Pseudomonas aeruginosa. Lett. Appl. Microbiol. 28: 13–16.

3. Ayres, H. M., D. N. Payne, J. R. Furr, and A. D. Russell. 1998. Effect of permeabilizing agents on antibacterial activity against a simple Pseudomonas aeruginosa biofilm. Lett. Appl. Microbiol. 27:79–82.

4. Banin, E., M. L. Vasil, and E. P. Greenberg. 2005. Iron and Pseudomonas aeruginosa biofilm formation. Proc. Natl. Acad. Sci. USA 102:11076–11081.

5. Boggis, W., M. A. Kenward, and M. R. Brown. 1979. Effects of divalent metal cations in the growth medium upon sensitivity of batch-grown Pseudomonas

aeruginosa to EDTA or polymyxin B. J. Appl. Bacteriol. 47:477–488.

6. Boles, B. R., M. Thoendel, and P. K. Singh. 2005. Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol. Microbiol. 57:

1210–1223.

7. Brown, M. R., and J. Melling. 1968. Loss of sensitivity to EDTA by Pseudo-

monas aeruginosa grown under conditions of Mg-limitation. J. Gen. Micro-

biol. 54:439–444.

8. Brown, M. R., and R. M. Richards. 1965. Effect of ethylenediamine tetraac-

etate on the resistance of Pseudomonas aeruginosa to antibacterial agents.

Nature 207:1391–1393.

9. Chen, X., and P. S. Stewart. 2000. Biofilm removal caused by chemical

treatments. Water Res. 34:4229–4233.

10. Chen, X., and P. S. Stewart. 2002. Role of electrostatic interactions in

cohesion of bacterial biofilms. Appl. Microbiol. Biotechnol. 59:718–720.

11. Costerton, J. W., P. S. Stewart, and E. P. Greenberg. 1999. Bacterial biofilms:

a common cause of persistent infections. Science 284:1318–1322.

12. Davies, D. G., M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton, and E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the

development of a bacterial biofilm. Science 280:295–298.

13. Gray, G. W., and S. G. Wilkinson. 1965. The effect of ethylenediaminetetra- acetic acid on the cell walls of some gram-negative bacteria. J. Gen. Micro-

biol. 39:385–399.

14. Hall-Stoodley, L., J. W. Costerton, and P. Stoodley. 2004. Bacterial biofilms:

from the natural environment to infectious diseases. Nat. Rev. Microbiol.

2:95–108.

15. Hancock, R. E. 1984. Alterations in outer membrane permeability. Annu.

Rev. Microbiol. 38:237–264.

16. Hentzer, M., G. M. Teitzel, G. J. Balzer, A. Heydorn, S. Molin, M. Givskov,

and M. R. Parsek. 2001. Alginate overproduction affects Pseudomonas

aeruginosa biofilm structure and function. J. Bacteriol. 183:5395–5401.

17. Holloway, B. W., V. Krishnapillai, and A. F. Morgan. 1979. Chromosomal

genetics of Pseudomonas. Microbiol. Rev. 43:73–102.

18. Huang, J., and K. L. Pinder. 1995. Effect of calcium on development of

anaerobic acidogenic biofilms. Biotechnol. Bioeng. 45:212–218.

19. Jensen, E. T., A. Kharazmi, P. Garred, G. Kronborg, A. Fomsgaard, T. E. Mollnes, and N. Hoiby. 1993. Complement activation by Pseudomonas

aeruginosa biofilms. Microb. Pathog. 15:377–388.

20. Jensen, E. T., A. Kharazmi, N. Hoiby, and J. W. Costerton. 1992. Some

bacterial parameters influencing the neutrophil oxidative burst response to

Pseudomonas aeruginosa biofilms. APMIS 100:727–733.

21. Jesaitis, A. J., M. J. Franklin, D. Berglund, M. Sasaki, C. I. Lord, J. B.

Bleazard, J. E. Duffy, H. Beyenal, and Z. Lewandowski. 2003. Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neu- trophil and biofilm interactions. J. Immunol. 171:4329–4339.

22. Kierek, K., and P. I. Watnick. 2003. The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2 -dependent biofilm development in sea water. Proc. Natl. Acad. Sci. USA 100:14357–14362.

23. Kite, P., K. Eastwood, S. Sugden, and S. L. Percival. 2004. Use of in vivo- generated biofilms from hemodialysis catheters to test the efficacy of a novel antimicrobial catheter lock for biofilm eradication in vitro. J. Clin. Microbiol. 42:3073–3076.

24. Lambert, R. J., G. W. Hanlon, and S. P. Denyer. 2004. The synergistic effect of EDTA/antimicrobial combinations on Pseudomonas aeruginosa. J. Appl. Microbiol. 96:244–253.

25. Leive, L. 1974. The barrier function of the gram-negative envelope. Ann. N. Y. Acad. Sci. 235:109–129.

26. Leive, L. 1965. Release of lipopolysaccharide by EDTA treatment of E. coli. Biochem. Biophys. Res. Commun. 21:290–296.

27. Lyczak, J. B., C. L. Cannon, and G. B. Pier. 2000. Establishment of Pseudo- monas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2:1051–1060.

28. Nickel, J. C., I. Ruseska, J. B. Wright, and J. W. Costerton. 1985. Tobra- mycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob. Agents Chemother. 27:619–624.

29. Nikaido, H., and M. Vaara. 1985. Molecular basis of bacterial outer mem- brane permeability. Microbiol. Rev. 49:1–32.

30. Parsek, M. R., and E. P. Greenberg. 1999. Quorum sensing signals in devel- opment of Pseudomonas aeruginosa biofilms. Methods Enzymol. 310:43–55. 31. Parsek, M. R., and P. K. Singh. 2003. Bacterial biofilms: an emerging link to

disease pathogenesis. Annu. Rev. Microbiol. 57:677–701.

32. Raad, I., I. Chatzinikolaou, G. Chaiban, H. Hanna, R. Hachem, T. Dvorak, G. Cook, and W. Costerton. 2003. In vitro and ex vivo activities of minocy- cline and EDTA against microorganisms embedded in biofilm on catheter

surfaces. Antimicrob. Agents Chemother. 47:3580–3585.

33. Raad, I., R. Hachem, R. K. Tcholakian, and R. Sherertz. 2002. Efficacy of minocycline and EDTA lock solution in preventing catheter-related bac- teremia, septic phlebitis, and endocarditis in rabbits. Antimicrob. Agents

Chemother. 46:327–332.

34. Sauer, K., A. K. Camper, G. D. Ehrlich, J. W. Costerton, and D. G. Davies.

2002. Pseudomonas aeruginosa displays multiple phenotypes during develop-

ment as a biofilm. J. Bacteriol. 184:1140–1154.

35. Skoog, A. D., D. M. West, and F. J. Holler. 1996. Fundamentals of analytical

chemistry, 7th ed. Saunders College Publishing, Fort Worth, Tex.

36. Stewart, P. S., and J. W. Costerton. 2001. Antibiotic resistance of bacteria in

biofilms. Lancet 358:135–138.

37. Teitzel, G. M., and M. R. Parsek. 2003. Heavy metal resistance of biofilm

and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 69:2313–

2320.

38. Turakhia, M. H., and W. G. Characklis. 1989. Activity of Pseudomonas

aeruginosa in biofilms: effect of calcium. Biotechnol. Bioeng. 33:405–414. 39. Turakhia, M. H., K. E. Cooksey, and W. G. Characklis. 1983. Influence of calcium-specific chelant on biofilm removal. Appl. Environ. Microbiol. 46:

1236–1238.

40. Vaara, M. 1992. Agents that increase the permeability of the outer mem-

brane. Microbiol. Rev. 56:395–411.

41. Webb, J. S., M. Lau, and S. Kjelleberg. 2004. Bacteriophage and phenotypic

variation in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 186:

8066–8073.

42. Yarwood, J. M., D. J. Bartels, E. M. Volper, and E. P. Greenberg. 2004.

Quorum sensing in Staphylococcus aureus biofilms. J. Bacteriol. 186:1838– 1850.

Image | APPLIED AND ENVIRONMENTAL MICROBIOLOGY



biofilms supported grants foundation national institute general medical sciences gm59026
Infinity Supercritical Spinning Disc Reactor Botanical Oil Extractor | Oil Extract Using Infinity Supercritical SDR Extraction System | Organic Method of Oil Extraction - Organic Botanical Extraction System Uses Water As A Solvent - Go to website

Search Engine Contact: greg@infinitysupercritical.com