Infinity Supercritical LLC

Publication Title | PROGRESS REPORT FOR AINGRA07038P

SDR Search Engine Series

Spinning Disc Reactor | Cannabis | Botanical Oil Organic Fluid Extraction search was updated real-time via Filemaker on:

Spinning Disc Reactor | Cannabis | Botanical Oil Organic Fluid Extraction | Return to Search List

Search Completed | Title | PROGRESS REPORT FOR AINGRA07038P
Original File Name Searched: r_07038P.pdf | Google It | Yahoo | Bing

Page Number: 001
Previous Page View | Next Page View



Date electronic copy received at AINSE: 27 May 2008


A SIMS study of the role of water uptake in novel all-solid-state polymeric ion sensors


Institution and Department

Chief Investigator

Professor Roland De Marco

Applied Chemistry, Curtin University of Technology

Other Investigators

Prof. Erno Pretsch, ETH Zürich Prof. Eric Bakker, Purdue University


Mr. Jean-Pierre Veder, PhD Student, Department of Applied Chemistry, Curtin University of Technology

ANSTO Investigators

Kathryn Prince

Specialist Committee



The overall aim of this project is to elucidate the mechanism of water uptake and water/ion transportation in hydrophobic copolymer all solid-state polymeric ion sensors, with a view to developing a chemically and physically robust solid-contact polymeric ion sensor technology that will be useful to sensor manufacturers, scientific instrument companies, analytical researchers, etc.

To achieve this goal, it is necessary to investigate rigorously the water/ion transportation in hydrophobic copolymer membranes using a variety of ex-situ and in-situ techniques. In this context, the Project Team will employ electrochemical impedance spectroscopy (EIS) and secondary ion mass spectrometry (SIMS) to study ion accumulation at the conductive polymer solid contact/copolymer ion sensing membrane interface, which is symbolic of water permeation through the membrane, along with in-situ EIS/neutron reflectometry (NR) and small angle neutron scattering (SANS) to investigate the permeation of water into the hydrophobic copolymer membrane. EIS research will be performed using Curtin University's high performance instrumentation noting that the EIS/NR and SANS research will be undertaken at ANSTO's OPAL reactor, while the proposed SIMS work will be undertaken by using ANSTO's SIMS facility that is unique within Australia.

The development of a robust ion-to-electron transducer in all-solid-state polymeric ion sensors will have important ramifications for the fields of analytical, environmental and clinical chemistry, viz., providing miniaturized sensors for use in-vivo experiments, forensic science and microfluidics, allowing the development of single droplet clinical ion analyzers, enabling the production of rugged polymeric ion sensors for use in submersible oceanographic instruments, etc.

In 2006, the proponents were awarded an ARC Linkage International Award (LX0776536) to extend the formal collaborations between Prof Roland De Marco and his students at Curtin University, and Profs Eric Bakker and Ernö Pretsch at Purdue Univeristy and ETH Zürich, respectively. Furthermore, in collaboration with Prof Colin Raston and a host of other scientists, an ARC LIEF grant (LE0882634) was awarded to purchase a series of cutting edge spinning disc reactors that can be used to make high quality nanoparticles. In the context of this project, it is envisaged that high quality conductive polymer nanoparticles will be synthesized and utilized in the powder coating of metals with high intergrity solid contacts for use in high quality all-solid-state polymeric ion sensors.



Infinity Supercritical Spinning Disc Reactor Botanical Oil Extractor | Oil Extract Using Infinity Supercritical - SDR Extraction System | Organic Method of Oil Extraction - Organic Botanical Extraction System Uses Water As A Solvent - Go to website

Search Engine Contact: